Clearing The Air On Airway Clearance

Jeff Marshall MBA, RRT, CPFT
Philips Respironics
May 6, 2017
Objectives

- Describe the difference between secretion mobilization and clearance
- Describe different types of airway clearance
- Describe the clinical advantages of mechanical insufflation-exsufflation
1. mobilization
2. removal

Airway clearance
Airway clearance

Techniques design to loosen and mobilize secretions from the lower airway to the upper airway.

- **Mucociliary clearance** (mobilization)
- **Secretion clearance**
- **Cough clearance** (removal)

Techniques that remove secretions from the lungs.
Airway clearance

Mucociliary clearance
(mobilization)
- Oscillation devices
- Positive expiratory pressure

Secretion clearance
- High-frequency chest-wall compression
- Chest physiotherapy

Cough clearance
(removal)
- Suctioning
- CoughAssist MI-E
- Manual assisted cough
- Breathing techniques
Mobilization
Clearance

- Manual assisted cough
- Suction
- CoughAssist mechanical in-exsufflation
Manual assisted cough

- Performed by the respiratory therapist
- Various positions and techniques

Manual assisted cough technique can be combined with the use of CoughAssist
Suction

- Standard of care
- Low cost
- Effective
Suctioning

• Invasive procedure

• Misses left main stem bronchus 90% of the time

• Tracheal trauma, suctioning induced hypoxemia, hypertension, cardiac arrhythmias and raised intracranial pressure have all been associated with suctioning

• Patients have reported that suctioning can be a painful and anxiety provoking procedure

painful
invasive
uncomfortable
hypoxia
infection
tissue trauma
bronchospasm
pulmonary atelectasis
pulmonary bleeding
a better way?
Mechanical Insufflator-exsufflator (M I-E)

- Noninvasive
- Comfortable
- Effective
CoughAssist vs. suctioning

- More effective in clearing secretions and better tolerated than endotracheal suctioning\(^1\)
- Clears airways for longer periods of time than tracheal suctioning\(^1\)
- 89% of patients preferred CA vs. Suction\(^2\)
- 29% more mucus\(^1\)
- 72% patients found it more effective\(^2\)

M I-E

- Mechanical insufflator-exsufflator assists patients in clearing retained secretions by applying a positive pressure to the airway, then rapidly shifting to a negative pressure.

- This rapid shift in pressure produces a high expiratory flow rate from the lungs.

- Proven as effective as a natural cough.
Introduction to M I-E

• The treatment can be delivered via facemask, mouthpiece, or endotracheal or tracheostomy tube

• It is effective for both invasive and non-invasively ventilated patients

• Cleared for adult and pediatric populations
Contraindications

- Bullous emphysema
- Pneumothorax or pneumo-mediastinum
- Acute Lung Injury / Acute Respiratory Distress Syndrome (ARDS)
- Acute pulmonary edema
- Recent barotrauma

Patients need to be cooperative (unless they have an artificial airway)
What does M I-E do?

Non invasive alternative to deep suctioning
Can be given via facemask, mouthpiece, endotracheal or tracheostomy tube

Simulates a cough
By applying a **positive pressure** (deep insufflation) to the airway **followed by a rapid shift to a negative pressure** to produce expiratory flow from the lungs and effectively remove secretions

Assists patients with clearing of retained secretions

Allows Data management
Peak Cough Flow, Tidal Volume, SpO2 on screen and trend review for long titration and long term follow-up
Indications for use of M I-E

• Neuromuscular disorders
 – ALS
 – Muscular Dystrophy
 – SMA
 – Multiple Sclerosis

• Spinal cord injury

• Tracheostomy

• Low peak cough flows
When should MI-E be instituted

Any patient unable to cough or clear secretions effectively due to reduced peak cough expiratory flow

- **PCF < 160 LPM** (Bach JR et Al, Chest 1996)

PCF < 270 LPM
Initiating M I-E

- For new patients
 - Begin with lower pressures
 - ±10-15 cmH₂O
 - Low inhale flow

- As they become comfortable
 - Progressively increase pressures 5-10 cmH₂O each cough sequence (4-6 breaths)

Common prescription pressures are generally around ± 35-40 cmH₂O
M I-E Procedure

- 1 cough cycle is composed of an inspiratory, expiratory and pause phase
- 4-6 cough cycles composes a sequence
- Rest patient 20-30 seconds between sequences
 - Make sure you allow enough time for secretion removal
- A treatment is 4-6 cough sequences
 - Generally performed several times per day
M I-E treatment

Inhale + Exhale + Pause = Cycle

Repeat cycle 4-6 times

Rest 20-30 seconds

Repeat sequence 4-6 times
Clinically proven

- Increase peak cough expiratory flows more than fourfold\(^1\)
- Reduce recurrent respiratory infections in patients with respiratory weakness from neuromuscular disease\(^2, 3\)
- Patients report that it feels “easier to breathe” after the use of CoughAssist\(^3\)
- Improvement in perceived quality of life due to fewer acute illness-related episodes\(^4\)
- Patients prefer MI-E to suctioning for comfort and effectiveness and find it less tiring\(^4\)

Consideration for critical care

In the critical care environment,
- Any patients that behave like restrictive patients from a muscular strength perspective
- Any intubated patients

Specific attention should be brought to the Neuromuscular Diseases Patients, such as:
 – Muscular dystrophy (Duchenne)
 – Myasthenia gravis
 – Poliomyelitis
 – Amyotrophic Lateral Sclerosis (ALS)
 – Spinal Muscular Atrophy (SMA)
Impaired airway clearance in the ICU

- Endotracheal intubation prevents the patient from closing the glottis\(^1\)

- Direct suction clears a small portion of the airway, is ineffective for clearing secretions in the peripheral airways\(^2\)

- Patient dependent upon mucociliary clearance rather than cough clearance

Extubation and airway clearance

• If the lungs are healthy and ventilation can be fully maintained noninvasively, then the only remaining concern is the effective expulsion of airway secretions.1

• Despite the importance of this factor, no ventilator weaning parameter addresses the ability to cough.2

Effects of mechanical insufflation-exsufflation in preventing respiratory failure after extubation: a randomized controlled trial

Miguel Gonclaves, Teresa Honrado, Jao Carlos Winck, Jose Artur Paiva

Objective: Assess the efficacy of MI-E in preventing re-intubation for patients in whom acute respiratory failure develops after extubation.
Patients meeting criteria SBT

Control Group
Conventional extubation protocol

Study Group
MI-E extubation protocol

O2, antibiotics, NIV bronchodilators

Plus CoughAssist

Gonclaves M. et al. Effects of mechanical insufflation-exsufflation in preventing respiratory failure after extubation: a randomized controlled trial
Outcome data

<table>
<thead>
<tr>
<th></th>
<th>Group A (n=40)</th>
<th>Group B (n=35) MIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIV application, n (%)</td>
<td>20 (50%)</td>
<td>14 (40%)</td>
</tr>
<tr>
<td>Patients reintubated (n, %)</td>
<td>19 (48%)</td>
<td>6 (17%)</td>
</tr>
<tr>
<td>Causes of reintubation (n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory pauses with loss of consciousness</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Respiratory distress after 2-h NIV</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Decreasing level of consciousness</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Intolerance to NIV</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Hypotension (systolic BP < 90 mm Hg for > 30 min.)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Secretion encumbrance associated/severe hypoxemia</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>NIV failure rate, n (%)</td>
<td>13 (65%)</td>
<td>2 (14%)</td>
</tr>
<tr>
<td>Total ICU length of stay</td>
<td>19.3 ± 8.1</td>
<td>16.9 ± 11.1</td>
</tr>
<tr>
<td>Post extubation ICU length of stay</td>
<td>9.8 ± 6.7</td>
<td>3.1 ± 2.5</td>
</tr>
</tbody>
</table>
M I-E combined with NIV

- Reduce re-intubation rates
- Reduce post-extubation ICU stay

Key points for treating NMD patients

1. Aggressive airway clearance is a key point to manage ARF in NMD

2. Patients with slowly progressive NMD should be extubated directly to NIV combined with assisted coughing.\(^1\)

3. Mechanical insufflation-exsufflation significantly reduces treatment failure in patients with neuromuscular disease, compared conventionally managed with chest physiotherapy alone.\(^2\)

Challenge the status quo

But, you know... that's the way we've always done it
Bring this technology to your organization

- Improve outcomes
- Reduce ICU days
- Reduce length of stay
- Lower cost of care
- Increase Patient satisfaction
Questions