Bronchiectasis in Children

Catherine Kier, M.D.
Professor of Clinical Pediatrics
Stony Brook Medicine, Stony Brook, New York
Division Chief, Pediatric Pulmonary
Director, Cystic Fibrosis Center
Director, Pediatric Sleep Disorders Center
Objectives

• Objective #1
discuss the specific etiologies and clinical presentation of bronchiectasis in childhood

• Objective #2
review approaches to diagnosis and management and current therapies for bronchiectasis in childhood
Bronchiectasis
Pathophysiology

chronic or repeated episodes of environmental insults + genetic vulnerability

bronchial injury and dilatation

Chronic infiltrates and atelectasis
Chronic productive or wet cough
Radiological imaging

Chest x-ray

HRCT scan
Pathology

Gross specimen
classic saccular enlargement
of the bronchi

Histology/pathology
dilated lumen of the bronchus and
chronic inflammation
in the bronchial wall
Causes of bronchiectasis

• Cystic fibrosis
• Impaired immune function
• Ciliary dyskinesia
• Clinical syndromes
• Congenital tracheobronchomegaly
• Aspiration syndromes
• Obstructive bronchiectasis
• Other pulmonary diseases
10-year-old boy with chronic infiltrates
12-year-old boy with cystic bronchiectasis since infancy
30-year-old male with recurrent pneumonia
25-year-old male diagnosed with asthma as a child
14-year-old male with situs inversus
Bronchiectasis in childhood

- cystic fibrosis (CF) is the most common cause of bronchiectasis in childhood

- non-CF bronchiectasis (systematic review)
 - specific etiologies on non-CF bronchiectasis in childhood (prevalence)
 - infectious (17%)
 - primary immunodeficiency (16%),
 - aspiration (10%)
 - ciliary dyskinesia (9%
 - congenital malformation (3%)
 - secondary immunodeficiency (3%)

Brower et al. BMC Pediatrics 2014, 14:299
Underestimate of cases

• Misdiagnosis
 • “difficult asthma”
 • Chronic obstructive pulmonary disease (COPD)
 • 29% of adults with COPD have underlying bronchiectasis
Genetics

• Interplay between genotype and environment = phenotypic expression of respiratory disease

• Frequency of CFTR genotypes

• Turkish study:
 • Consanguinity
 • Transporter associated with Antigen Presentation (TAP) gene polymorphisms in cohort of children with bronchiectasis
Innate pulmonary immune mechanisms

• Pro-inflammatory cytokine
• Adhesion molecule production and receptor expression
• Exaggerated neutrophilic response
• Metalloproteinases (MMP-2 and -9)
 • Isolated in sputum and BAL
 • Airway destruction by galtinases and collagenases
Reid’s subtypes
(bronchographic findings)

- Cylindrical
- Varicose
- Cystic

Cylindrical
Varicose and cystic changes
HRCT scoring systems
(more recent)

Markers of disease severity

• Cylindrical
• Saccular
saccular bronchiectasis
Increased bronchoarterial ratio

Signet ring sign
broncho-arterial ratio > 1

Diameter of the bronchial lumen divided by the diameter of accompanying artery
normal bronchoarterial ratio
< 5 years of age = 0.5
< 18 years of age = 0.8
fluid-filled dilated bronchi
bronchial wall thickening
Vascular changes

• Total bronchial arterial blood flow is increased

• Extensive precapillary anastomoses between the two arterial systems (shunt between pulmonary and systemic systems)

• Vascular remodeling of the pulmonary arteries and arterioles (pulmonary hypertension and cor pulmonale)
Airway mucosa abnormality (bronchoscopy)
Sputum markers

• Neutrophilic airway inflammation
 • CF sputum
 • Viscous
 • Elastic
 • Adhesive
Mucus-filled saccular airway changes
Respiratory pathogens

- *Streptococcus pneumoniae*
- *Haemophilus influenza non-type b*
- *Moraxella catarrhalis*
- *Pseudomonas aeruginosa*
Mechanisms of lung destruction

• Exaggerated or persistent pulmonary inflammation
• Balance between proteases and anti-proteases
• Collagenase activity (from neutrophils and bacteria)
• Metalloproteinases
• Impaired removal of apoptotic inflammatory cells
• Adhesion molecules
Management Principles

• Aggressive management of infections (antimicrobials)
• Airway clearance methods
• Attention to nutrition
• Vigilant monitoring of clinical trends
• Proactive care
Philosophy of antibiotic use

• Maintenance
• Intermittent
• Regular hospitalizations
Airway Clearance Techniques

• Mechanical “valve” devices (Flutter, Pep, Acapella, and others)
• Postural drainage and chest physiotherapy
• Therapeutic vest
Mucus alteration agents

- Inhaled β_2-agonists and/or anticholinergic bronchodilators
- Hypertonic saline or mannitol inhalation
- Dornase alfa (Pulmozyme)
- N-Acetylcysteine (Mucomyst)
New therapies

• Macrolides
• Anti-inflammatory
• Anti-oxidant
• Anti-secretagogue effects
• Statins
Other therapies/management

• Asthma therapy
• Environmental modification
• Prevention: Vaccines
Complications related to bronchiectasis

- Hemoptysis
- Lung abscess
- Pulmonary hypertension
- Sleep disorders
- Reactive airway disease
Lobectomy

• **Indications**
 - Poor control of symptoms
 - Poor growth inspite of optimal medical therapy
 - Severe and recurrent hemoptysis uncontrolled by bronchial artery embolization

• **Relative indication**
 - Localized disease with moderate persistent symptoms

• **Contraindications**
 - Widespread bronchiectasis
 - Young child (<6 years of age)
 - Minimally symptomatic disease
Bronchiectasis and health care

• Identifying children for appropriate referral
• Confirm diagnosis and investigate etiology
• Assess severity
• Develop management plan
• Multidisciplinary team approach to chronic care
• Public health issues